EconPapers    
Economics at your fingertips  
 

Exploring the potential of collective learning to reduce foraging time

Sanchayan Bhowal, Ramkrishna Jyoti Samanta, Arnob Ray, Sirshendu Bhattacharyya and Chittaranjan Hens

Chaos, Solitons & Fractals, 2023, vol. 168, issue C

Abstract: Animal groups collaborate with one another throughout their lives to better comprehend their surroundings. Here, we try to model, using continuous random walks, how the entire life process and collective learning impact the searching process. We attempt to simulate an ecosystem where the post-reproductive foragers leave their colonies to find the targets while others stay and breed at the base. That is to say, a group of foragers searches for a location where they can access the targets efficiently. Particularly, we have explored a hypothetical situation in which the relocation to the new position depends on the agreement level of the species as well as an additional waiting time due to this agreement level. In this backdrop, detailed numerical results reveal that the expected foraging time attains minima for a suitable range of the agreement level. We have also shown that the expected foraging time linearly increases with the death-to-birth ratio for a given agreement level.

Keywords: Foraging; Collective learning; Communication network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923000243
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000243

DOI: 10.1016/j.chaos.2023.113123

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000243