EconPapers    
Economics at your fingertips  
 

Uncertain random enhanced index tracking for portfolio selection with parameter estimation and hypothesis test

Bo Li and Ziqiang Lu

Chaos, Solitons & Fractals, 2023, vol. 168, issue C

Abstract: The enhanced index tracking is an effective method for portfolio optimization that focuses on imitating the behavior of a special benchmark and achieving an excess return. In addition, uncertainty and randomness are two intrinsic attributes of real world systems. In this paper, we study an uncertain random enhanced index tracking for portfolio optimization with parameter estimation and hypothesis test based on chance theory, which combines uncertainty theory and probability theory. First, we formulate an uncertain random mean–variance enhanced index tracking model including both random risky securities and uncertain risky securities. Then the presented model is transformed into a quadratic programming problem and the analytical solutions are derived for some special cases. Furthermore, the uncertain hypothesis test is applied to examine the correctness of the unknown parameters solved by uncertain parameter estimation. Finally, three numerical simulations are presented for showing the applicability of the formulated models and the effectiveness of the enhanced index tracking strategies.

Keywords: Uncertainty theory; Portfolio optimization; Enhanced index tracking; Uncertain random variable; Hypothesis test (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923000267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000267

DOI: 10.1016/j.chaos.2023.113125

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000267