Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua
Alexander S. Balankin and
Baltasar Mena
Chaos, Solitons & Fractals, 2023, vol. 168, issue C
Abstract:
This paper is devoted to the development of local vector calculus in fractional-dimensional spaces, on fractals, and in fractal continua. We conjecture that in the space of non-integer dimension one can define two different del-operators acting on the scalar and vector fields respectively. The basic vector differential operators and Laplacian in the fractional-dimensional space are expressed in terms of two del-operators in a conventional way. Likewise, we construct Laplacian and vector differential operators associated with Fα-derivatives on fractals. The conjugacy between Fα and ordinary derivatives allow us to map the vector differential operators on the fractal domain onto the vector differential calculus in the corresponding fractal continuum. These results provide a novel tool for modeling physical phenomena in complex systems.
Keywords: Fractal; Fractional-dimensional space; Degrees of freedom; Metric; Fractal calculus (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923001042
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001042
DOI: 10.1016/j.chaos.2023.113203
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().