Turing instability in a network-organized epidemic model with delay
Qianqian Zheng,
Jianwei Shen,
Vikas Pandey,
Linan Guan and
Yantao Guo
Chaos, Solitons & Fractals, 2023, vol. 168, issue C
Abstract:
In this paper, we show the impact of both network and time delays on Turing instability and demarcate the role of diffusion in the epidemic. The stability and bifurcation of equilibrium points are analyzed to reveal the epidemic state, which is the precondition of pattern formation. The network could lead to the transition from the endemic to the periodic outbreak via negative wavenumber, which provides a way to prevent significant harm or decrease the damage of the epidemic to humans by the delay, the connection rate, and the infection rate. Also, the threshold value of time delay is proportional to the minimum eigenvalue of the network matrix, which provides a way to control the periodic behavior. Finally, numerical simulations validate these analytical results and the mechanisms of frequent outbreaks.
Keywords: SIR; Pattern formation; Network; Matrix; Turing instability; Delay (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923001066
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001066
DOI: 10.1016/j.chaos.2023.113205
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().