EconPapers    
Economics at your fingertips  
 

Explosive synchronization dependence on initial conditions: The minimal Kuramoto model

Atiyeh Bayani, Sajad Jafari, Hamed Azarnoush, Fahimeh Nazarimehr, Stefano Boccaletti and Matjaž Perc

Chaos, Solitons & Fractals, 2023, vol. 169, issue C

Abstract: Transitions from incoherent to coherent dynamical states can be observed in various real-world networks, ranging from neurons to power-grids. These transitions can be explosive or continuous, with far-reaching implications for the functioning of the affected system. It is therefore of the utmost importance to determine the conditions under which such transitions occur. While a lot of studies in literature focused on the dynamical and/or structural network properties that may generate explosive synchronization, here we report on the effects of different initial conditions. To this purpose, we consider the minimal network of Kuramoto oscillator that may display explosive synchronization, and we show that the nature of the transition changes from continuous to discontinuous as phases are differently initialized. We also determine the critical coupling strength for explosive synchronization, which also depends on the initial conditions.

Keywords: Kuramoto model; Network; Explosive synchronization; Continuous synchronization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923001443
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001443

DOI: 10.1016/j.chaos.2023.113243

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001443