EconPapers    
Economics at your fingertips  
 

Deep learning model of convolutional neural networks powered by a genetic algorithm for prevention of traffic accidents severity

Luis Pérez-Sala, Manuel Curado, Leandro Tortosa and Jose F. Vicent

Chaos, Solitons & Fractals, 2023, vol. 169, issue C

Abstract: The World Health Organization highlights that the number of annual road traffic deaths has reached 1.35 million (Global Status Report on Road Safety 2018). In addition, million of people suffer more or less important injuries as a consequence of this type of accidents. In this scenario, the prediction of the severity of traffic accidents is an essential point when it comes to improving the prevention and reaction of the entities responsible. On the other hand, the development of reliable methodologies to predict and classify the level of severity of traffic accidents, based on various variables, is a key component in the field of research in road safety. This work aims to propose a new approach, based on convolutional neural networks, for the detection of the severity of traffic accidents. Behind this objective is the preprocessing, analysis and visualization of data as well as the design, implementation and comparison of machine learning models considering accuracy as a performance indicator. For this purpose, a scalable and easily reusable methodology has been implemented. This methodology has been compared with other deep learning models verifying that the results of the designed neural network offer better performance in terms of quality measures.

Keywords: Convolutional neural networks; Genetic algorithm; Data analysis; Traffic accidents (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923001467
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001467

DOI: 10.1016/j.chaos.2023.113245

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001467