Design and geometric control of polynomial chaotic maps with any desired positive Lyapunov exponents
Chunlei Fan and
Qun Ding
Chaos, Solitons & Fractals, 2023, vol. 169, issue C
Abstract:
Digital chaotic maps are severely hampered by the finite calculation accuracy of the hardware device that is used to implement them, and their applications in cryptography and information assurance are seriously degraded. To resolve this issue, we put forward a universal iterative model to construct non-degenerate polynomial chaotic maps with any desired number of positive Lyapunov exponents. In addition, we innovatively propose the geometric control methods of polynomial chaotic maps, including amplitude control, offset boosting, plane rotation, shape control, and combined regulation. Furthermore, to assess the effectiveness and feasibility of the proposed method, a microcontroller-based platform was developed to demonstrate the hardware implementation and geometric control of the proposed polynomial chaotic map. Finally, a PRNG is constructed by interval quantization. Numerical experiments are performed to verify the desirable statistical properties of the PRNG in terms of local weak random test, discrete Fourier transform test, linear complexity and NIST SP800-22 test.
Keywords: Polynomial chaotic map; Lyapunov exponent; PRNG; Geometric control (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923001595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001595
DOI: 10.1016/j.chaos.2023.113258
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. (repec@elsevier.com).