Continuous and explosive synchronization of phase oscillators on star network: Effect of degree-frequency correlations and time-delays
Umeshkanta Singh Thounaojam and
Kaustubh Manchanda
Chaos, Solitons & Fractals, 2023, vol. 169, issue C
Abstract:
It is crucial to find time-delay intervals that control and mediate the onset and suppression of explosive synchronization in complex systems. To address this, we study the desynchrony-to-synchrony transitions in delay-coupled phase oscillators with degree-frequency correlation on a star network. We study how delay affects the transitions from desynchrony to synchrony. We observe that the system first undergo remote synchronization and the routes to synchrony are either continuous or discontinuous, depending on the delay intervals. We provide numerical results to establish a fundamental relation between delay intervals and time-period induced by the system’s average frequency of intrinsic oscillators. In the regime of global synchrony, all oscillators operate with a common frequency, and a phase shift develops between the hub and peripheral oscillators. We derive the analytical expression of common frequency, the phase difference between oscillators, and the threshold coupling strength for the onset of global synchronization. We perform a linear stability analysis of the common frequency at the point of threshold coupling and examine the series of saddle–node bifurcations present in the system. Estimates of linearly stable solutions of frequency are found to be in good agreement with numerical results. Hence, this study elucidates the role of delay on the routes to synchrony, stability of synchronization solutions, and multistability regimes.
Keywords: Coupled oscillators; Time-delays; Synchronization; Linear stability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923002278
DOI: 10.1016/j.chaos.2023.113326
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().