Chimera states in coupled pendulum with higher-order interaction
Xueqi Li,
Dibakar Ghosh and
Youming Lei
Chaos, Solitons & Fractals, 2023, vol. 170, issue C
Abstract:
The study of chimera states in non-pairwise interaction networks is one of the challenging issues in current research. In recent work [S. Kundu and D. Ghosh (2022)], it was discovered that higher-order interactions promote chimera states in nonlocally coupled identical Kuramoto oscillators. In this work, we investigate a higher-order interaction network of a nonlocally coupled pendulum with inertia. By studying pairwise and non-pairwise interaction strengths, we observe different collective states, like synchronization, coherent traveling waves, single-head, multi-head, imperfect traveling chimera states, and incoherent states. In particular, we discover a novel non-stationary chimera state, namely a penetrable traveling chimera state, where the oscillators in the coherent domain of the network travel regularly while others drift randomly in the incoherent domain. We make a map of all the spatiotemporal behaviors in the parameter space of interactive coupling and identify the transition from non-stationary chimeras to coherent states passing through stationary chimeras. As higher-order coupling strength increases, collective dynamics eventually transit to coherence since higher-order interactions are conducive to the emergence of a multi-stable state even without non-pairwise interactions, as demonstrated by the basin stability simulations. After analyzing the damping effects, we consolidate the generality of damping in eradicating dynamical behavior. The abundant dynamics appear, then deteriorate, and even disappear in the corresponding model with inertia. The study of rich dynamic behavior is essential for facilitating an understanding of the impact of higher-order interactions and damping effects on the dynamics of complex real-world networks.
Keywords: High-order interactions; Coupled pendulum; Chimera states (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002266
DOI: 10.1016/j.chaos.2023.113325
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().