Enhanced explosive synchronization in heterogeneous oscillator populations with higher-order interactions
Can Xu,
Yun Zhai,
Yonggang Wu,
Zhigang Zheng and
Shuguang Guan
Chaos, Solitons & Fractals, 2023, vol. 170, issue C
Abstract:
Explosive synchronization underlying many realistic dynamic processes has attracted great attention in the various fields. Here, we generalize the Kuramoto model with heterogeneous coupling incorporating the higher-order interactions encoded with the simplicial complexes. We show that the introduced nonlinear couplings can significantly enhance the emergence of explosive synchronization in addition to the pairwise interactions. In particular, we uncover that the critical thresholds manifesting the onset or vanishing of the abrupt synchronization are enlarged as the fraction of the higher-order interactions increases. As a consequence, the backward critical order parameter characterizing the desynchronization transition and the width of hysteresis supporting the bistability are remarkably improved. More importantly, we provide an analytical treatment for untangling the stability properties of the equilibrium states at different levels, which allows us to understand the bifurcation mechanism and locate the associated critical points. This study is a step forward in highlighting the importance of higher-order interactions among dynamical units, which might provide control strategies for the induced abrupt emergent phenomena in networked system.
Keywords: Synchronization; Complex system; Coupled oscillators; Phase transition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002448
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002448
DOI: 10.1016/j.chaos.2023.113343
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().