Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model
Meihui Zhang,
Jinhong Jia and
Xiangcheng Zheng
Chaos, Solitons & Fractals, 2023, vol. 170, issue C
Abstract:
We present a fully-discrete finite element scheme to a generalized distributed-order time-fractional option pricing model, which adequately describes, e.g., the valuation of the European double barrier option. Due to the dependence of the density function on the stock price, the temporal discretization coefficients from the generalized distributed-order time-fractional derivative will be coupled with the inner product of the finite element method, which significantly complicates the analysis and traditional numerical analysis techniques do not apply. Novel techniques are developed to prove error estimates of this fully-discrete numerical scheme, which not only resolves the above difficulty, but indeed simplifies existing methods by avoiding the mathematical induction procedure. Based on the structure of the all-at-once coefficient matrix of the proposed numerical scheme, a fast divide and conquer algorithm is developed to reduce the computational cost of solving the numerical scheme from O(LNt2Nx) to O(LNtlogNtNx), where L, Nt and Nx refer to numbers of the degree of freedom of discretizations for the distributed-order integral, the spatial domain and the time period, respectively. Numerical experiments are performed to demonstrate the accuracy of the proposed numerical scheme and its applications in the valuation of the option price.
Keywords: Distributed-order; Time-fractional; Black–Scholes; Option pricing; Error estimate (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002540
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002540
DOI: 10.1016/j.chaos.2023.113353
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().