Computing sandpile configurations using integer linear programming
Carlos A. Alfaro,
Carlos E. Valencia and
Marcos C. Vargas
Chaos, Solitons & Fractals, 2023, vol. 170, issue C
Abstract:
Sandpile group or Abelian sandpile model was the first example of a self-organized critical system studied by Bak, Tang and Wiesenfeld. It is well known that these recurrent configurations can be characterized as the optimal solution of certain non-linear optimization problems. We show that recurrent configurations of the Abelian sandpile model of a graph correspond to optimal solutions of some integer linear programs. More precisely, we present two new integer linear programming models, one that computes recurrent configurations and other one that computes the order of the configuration. As an application, we calculate the identity configuration for the cone of a regular graph and the cycle with n+1 vertices using the Weak Duality Theorem in linear programming.
Keywords: Sandpile group; Recurrent configurations; Integer linear programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002576
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002576
DOI: 10.1016/j.chaos.2023.113356
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().