EconPapers    
Economics at your fingertips  
 

Low-fluctuation nonlinear model using incremental step pulse programming with memristive devices

Geun Ho Lee, Tae-Hyeon Kim, Sangwook Youn, Jinwoo Park, Sungjoon Kim and Hyungjin Kim

Chaos, Solitons & Fractals, 2023, vol. 170, issue C

Abstract: On-chip learning in neuromorphic systems, wherein both training and inference are performed on memristive synaptic devices, has been actively studied recently. However, on-chip learning is often affected by the weight-update linearity of memristive synaptic devices. Herein, we fabricated a Pt/Al2O3/TiOx/Ti/Pt stacked memristor device with excellent switching and reliability characteristics. Its weight-update linearity was analyzed via nonlinear A fitting through an on-chip simulation of the modified National Institute of Standards and Technology (MNIST) dataset. We confirmed the excellent recognition accuracy and low-fluctuation characteristics of the proposed model based on its similar characteristics to software learning. We obtained the perfect linear model and two types of nonlinear model characteristics of the memristor through incremental step pulse programming and performed an on-chip simulation. In addition, the characteristics of the measured cycle-to-cycle variation were reflected in the on-chip learning and were analyzed. We expect the low-fluctuation nonlinear model developed herein to be useful for on-chip learning owing to its excellent learning characteristics.

Keywords: Neuromorphic system; Memristor; On-chip learning; Incremental step pulse programming; Weight-update linearity; Low-fluctuation nonlinear model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002606
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002606

DOI: 10.1016/j.chaos.2023.113359

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002606