Stochastic analysis of a COVID-19 model with effects of vaccination and different transition rates: Real data approach
Changjin Xu,
Zixin Liu,
Yicheng Pang and
Ali Akgül
Chaos, Solitons & Fractals, 2023, vol. 170, issue C
Abstract:
This paper presents a stochastic model for COVID-19 that takes into account factors such as incubation times, vaccine effectiveness, and quarantine periods in the spread of the virus in symptomatically contagious populations. The paper outlines the conditions necessary for the existence and uniqueness of a global solution for the stochastic model. Additionally, the paper employs nonlinear analysis to demonstrate some results on the ergodic aspect of the stochastic model. The model is also simulated and compared to deterministic dynamics. To validate and demonstrate the usefulness of the proposed system, the paper compares the results of the infected class with actual cases from Iraq, Bangladesh, and Croatia. Furthermore, the paper visualizes the impact of vaccination rates and transition rates on the dynamics of infected people in the infected class.
Keywords: Ergodic theory; Global solution; Stochastic differential equations; Extinction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923002965
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002965
DOI: 10.1016/j.chaos.2023.113395
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().