Dynamical origin of the explosive synchronization with partial adaptive coupling
Can Xu,
Huajian Yu and
Shuguang Guan
Chaos, Solitons & Fractals, 2023, vol. 172, issue C
Abstract:
Explosive synchronization underlying many abrupt dynamical phenomena has attracted a great deal of attention in various fields. Here, we untangle the dynamical origin of the explosive synchronization in a system of coupled phase oscillators, incorporating partial adaptation encoded by feedback between the coupling and the global rhythm of the population. We mathematically argue that there exists no a critical adaptive fraction for the synchronization transition converting from the second to first order. Explosive synchronization, which is much easier to achieve than previously deemed, takes place as long as the adaptive fraction is nonzero. In particular, we uncover that an atypical scaling of the order parameter near criticality, manifesting the metastable state in the hysteresis region, is responsible for the emergence of explosive synchronization. Our work thus provides a profound insight into the dynamical nature of the abrupt transitions induced by the adaptation, a dynamical phenomenon of continuous interest and subject to intense investigation.
Keywords: Synchronization; Complex system; Coupled oscillators; Phase transition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004393
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004393
DOI: 10.1016/j.chaos.2023.113538
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().