A statistical moment-based spectral approach to the chance-constrained stochastic optimal control of epidemic models
Alberto Olivares and
Ernesto Staffetti
Chaos, Solitons & Fractals, 2023, vol. 172, issue C
Abstract:
This paper presents a spectral approach to the uncertainty management in epidemic models through the formulation of chance-constrained stochastic optimal control problems. Specifically, a statistical moment-based polynomial expansion is used to calculate surrogate models of the stochastic state variables of the problem that allow for the efficient computation of their main statistics as well as their marginal and joint probability density functions at each time instant, which enable the uncertainty management in the epidemic model. Moreover, the surrogate models are employed to perform the corresponding sensitivity and risk analyses. The proposed methodology provides the designers of the optimal control policies with the capability to increase the predictability of the outcomes by adding suitable chance constraints to the epidemic model and formulating a proper cost functional. The chance-constrained optimal control of a COVID-19 epidemic model is considered in order to illustrate the practical application of the proposed methodology.
Keywords: Arbitrary polynomial chaos; Stochastic optimal control; Chance constraints; Epidemic models; COVID-19 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004617
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004617
DOI: 10.1016/j.chaos.2023.113560
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().