A multi-scale transition matrix approach to chaotic time series
Qianshun Yuan,
Jing Zhang,
Haiying Wang,
Changgui Gu and
Huijie Yang
Chaos, Solitons & Fractals, 2023, vol. 172, issue C
Abstract:
There exist rich patterns in nonlinear dynamical processes, but they merge into averages in traditional statistics-based time series analysis. Herein the multi-scale transition matrix is adopted to display the patterns and their evolutions in several typical chaotic systems, including the Logistic Map, the Tent Map, and the Lorentz System. Compared with Markovian processes, there appear rich non-trivial patterns. The unpredictability of transitions matches almost exactly with the Lyapunov exponent. The eigenvalues decay exponentially with respect to the time scale, whose decaying exponents give us the details in the curves of Lyapunov exponent versus dynamical parameters. The evolutionary behaviors differ with each other and do not saturate to the ones for the corresponding shuffled series.
Keywords: Multi-scale transition matrix; Nonlinear time series; Complex network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004903
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004903
DOI: 10.1016/j.chaos.2023.113589
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().