EconPapers    
Economics at your fingertips  
 

Extended fractional-polynomial generalizations of diffusion and Fisher–KPP equations on directed networks

Arsalan Rahimabadi and Habib Benali

Chaos, Solitons & Fractals, 2023, vol. 174, issue C

Abstract: In a variety of practical applications, there is a need to investigate diffusion or reaction–diffusion processes on complex structures, including brain networks, that can be modeled as weighted undirected and directed graphs. As an instance, the celebrated Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) reaction–diffusion equation is becoming increasingly popular for use in graph frameworks by substituting the standard graph Laplacian operator for the continuous one to study the progression of neurodegenerative diseases such as Alzheimer’s disease (AD). In this work, we establish existence, uniqueness, and boundedness of solutions for generalized Fisher–KPP reaction–diffusion equations on undirected and directed networks with fractional polynomial (FP) terms. This type of model has possible applications for modeling spreading of diseases within neuronal fibers whose porous structure may cause particles to diffuse anomalously. In the case of pure diffusion, convergence of solutions and stability of equilibria are also analyzed. Moreover, different families of positively invariant sets for the proposed equations are derived. Finally, we conclude by investigating nonlinear diffusion on a directed one-dimensional lattice.

Keywords: Fractional polynomial; Fisher–KPP reaction–diffusion equation; Nonlinear diffusion; Anomalous diffusion; Directed networks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923006720
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006720

DOI: 10.1016/j.chaos.2023.113771

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006720