Stability and Hopf bifurcation of a modified Leslie–Gower predator–prey model with Smith growth rate and B–D functional response
Xiaozhou Feng,
Xia Liu,
Cong Sun and
Yaolin Jiang
Chaos, Solitons & Fractals, 2023, vol. 174, issue C
Abstract:
This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of stability and the Hopf bifurcation, we discuss the local stability and the existence of the Hopf bifurcation at the positive constant equilibrium solution of the ODE model, which the model undergoes the Hopf bifurcation when bifurcation parameter δ crosses the bifurcation critical value b0. Moreover, stability of the bifurcation periodic solution is analyzed. Secondly, the Turing instability and the direction of Hopf bifurcation of the corresponding to PDE system are investigated by using Normal form theory and Centre manifold theory. Finally, we study the numerical simulations of this system to illustrate the theoretical analysis.
Keywords: Leslie–Gower model; Stability; Neumann boundary condition; Hopf bifurcation; Turing instability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923006951
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006951
DOI: 10.1016/j.chaos.2023.113794
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().