Information fractal dimension of Random Permutation Set
Tong Zhao,
Zhen Li and
Yong Deng
Chaos, Solitons & Fractals, 2023, vol. 174, issue C
Abstract:
Random permutation set (RPS) is a recently introduced set based on the Dempster–Shafer evidence theory, which considers all possible permutations of the elements within a given set. The information dimension is a significant fractal dimension which plays a vital role in the information theory. Nevertheless, how to develop the information dimension of a specific permutation mass function in RPS remains an unresolved problem. To solve this problem, we propose a new dimension named information fractal dimension of Random Permutation Set. Moreover, several properties of the proposed dimension are explored and numerical examples are provided to illustrate its effectiveness. The research discovers an interesting property related to the permutation mass function corresponding to the maximum RPS entropy: its information dimension is 2, which is equivalent to the fractal dimension of Brownian motion and Peano curve.
Keywords: Information dimension; Random permutation set; Fractal; Permutation mass function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923007841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007841
DOI: 10.1016/j.chaos.2023.113883
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().