Equilibrium stability in the triangular restricted four-body problem with non-spherical primaries
Eman M. Moneer,
Yazan Allawi,
Samira Elaissi,
Fredy L. Dubeibe and
Euaggelos E. Zotos
Chaos, Solitons & Fractals, 2023, vol. 175, issue P1
Abstract:
This paper investigates the Lagrangian configuration of the restricted four-body problem in which the three primaries are non-spherical, specifically either prolate or oblate. By using various standard numerical methods, the positions of equilibrium points and their linear stability and dynamical type were determined. The impact of mass and shape of the primaries on the system’s equilibrium points and their linear stability were systematically explored by discretizing the parameter space for the non-sphericity parameter within a specified interval. The study revealed that the system always has an even number of equilibrium points, ranging from 8 to 22. Linearly stable points always exist, except for the case where there are 10 equilibrium points, where all the points are unstable.
Keywords: Restricted 4-body problem; Equilibrium points; Linear stability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923008342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008342
DOI: 10.1016/j.chaos.2023.113933
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().