EconPapers    
Economics at your fingertips  
 

Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects

Feng Rao and Yun Kang

Chaos, Solitons & Fractals, 2023, vol. 175, issue P1

Abstract: This paper proposes and studies the dynamics of a Holling-type II predator–prey interaction system that incorporates the following three components: (1) a prey refuge; (2) predation fear and its carry-over effects; and (3) environmental noise in both prey and predator populations. The impacts of those three components are studied through both rigorous analysis and numerical simulations. Analytical results show that the introduction of prey refuge, predation fear, and its carry-over effects can generate Hopf bifurcation. It is found that increasing prey refuge and predation fear effect in a reasonable region can stabilize the system, while excessive refuge strength would lead to the extinction of predators. The theoretical results of the corresponding system with environmental noise include (1) sufficient conditions for the existence of a unique ergodic stationary distribution of the SDE system by constructing appropriate stochastic Lyapunov functions; (2) the explicit probability density function of the distribution by solving the Fokker–Planck equation; and (3) the extinction conditions of prey and/or predator species at an exponential rate in the long run. Our work shows that the proposed model, incorporating prey refuge, predation fear, carry-over effect, and environmental noise, exhibits rich and complex dynamic behaviors. Moreover, our results indicate that small environmental noise can save the prey and predator from extinction, while large environmental noise can drive the species to extinction. These interesting findings provide more perspectives on the protection and control of species in complex communities.

Keywords: Stochastic prey–predator system; Fear and its carry-over effect; Prey refuge; Stationary distribution; Probability density function; Extinction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923008366
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008366

DOI: 10.1016/j.chaos.2023.113935

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008366