Chaotic time series prediction of nonlinear systems based on various neural network models
Ying Sun,
Luying Zhang and
Minghui Yao
Chaos, Solitons & Fractals, 2023, vol. 175, issue P1
Abstract:
This paper discusses the chaos prediction of nonlinear systems using various neural networks based on the modified substructure data-driven modeling architecture. In the modeling step, we construct two-coefficient loss functions according to the linear multi-step method to improve the prediction accuracy of neural networks. Then, the predicted response data of the system is given by the forward Euler method and neural networks. Under such architecture, chaos forecasting is carried out on a five-degree-of-freedom duffing oscillator system via the feedforward neural network (FNN), long short-term memory (LSTM) network and LSTM encoder-decoder (LSTM ED). The numerical simulation results show that the model can predict chaotic time series even if a small amount of information and samples are known, and the prediction window is twice that of the observation window. Among these models, LSTM ED exhibits the highest accuracy in both short-term and long-term chaos prediction. Furthermore, the prediction results mainly involve three evaluation indicators: absolute error, mean absolute error, normalized root mean square error. Through error analysis and noise processing, LSTM ED shows superior stability, robustness and extrapolation ability. Its prediction error is about half of FNN and the maximum increase in accuracy is 71.3 %.
Keywords: Neural networks; LSTM model; Encoder-decoder model; Chaos prediction; Time series (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792300872X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s096007792300872x
DOI: 10.1016/j.chaos.2023.113971
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().