Generalized FitzHugh–Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations
I.B. Tagne Nkounga,
Yibo Xia,
Serhiy Yanchuk,
R. Yamapi and
Jürgen Kurths
Chaos, Solitons & Fractals, 2023, vol. 175, issue P1
Abstract:
We propose an extension of the Fitzhugh-Nagumo model, which possesses a regime of three coexisting stable states: resting equilibrium and two stable oscillatory states. Such a regime is absent in the original Fitzhugh-Nagumo model but it is known to exist in higher-dimensional conductance based neuronal models. Thus, the proposed system provides a simpler two-dimensional model with such a property. Using numerical bifurcation analysis as well as Lindsted’s method, we explore parameter regions and bifurcations leading to the tristability. Considering the effects of channel fluctuations as Gaussian white noise, phenomenological bifurcations of the corresponding stochastic system are analyzed using a Fokker–Planck approach. We investigate how the interplay between the system parameters and the noise intensity induces a switching of neural activities between silence, subthreshold, and spiking.
Keywords: FitzHugh–Nagumo; Conductance-based neuronal model; Tristability; Quiescent state; Subthreshold oscillations; Spike generation; Channel noise; Probability distribution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009219
DOI: 10.1016/j.chaos.2023.114020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().