A novel similarity-based parameterized method for link prediction
Abhay Kumar Rai,
Shashi Prakash Tripathi and
Rahul Kumar Yadav
Chaos, Solitons & Fractals, 2023, vol. 175, issue P2
Abstract:
Any complex real-world system that changes over time can be represented as a network. We analyze these networks using network theory-based techniques to infer useful information from them. An important problem associated with complex systems is the link prediction problem. It aims to find the possibility of future or missing links in a network. Existing similarity-based link prediction methods consider one or two network features for link prediction and perform well on specific types of networks. This empirical work proposes a novel similarity-based parameterized algorithm for link prediction in complex networks. The proposed method uses three simple features and performs well on the various categories of networks. Using AUC (Area Under the Receiver Operating Characteristics Curve), accuracy, and f-measure as the performance metrics, we conduct an experimental evaluation of the proposed method against nine state-of-the-art methods and on five real-world datasets. We also perform a time comparison of the proposed method against others. It is more accurate and time-efficient compared to recent learning-based methods. The experimental results assert the enhanced performance of the proposed method.
Keywords: Complex systems; Social networks; Similarity-based methods; Link prediction; Network features (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009475
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009475
DOI: 10.1016/j.chaos.2023.114046
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().