Forecasting gold price using machine learning methodologies
Gil Cohen and
Avishay Aiche
Chaos, Solitons & Fractals, 2023, vol. 175, issue P2
Abstract:
This study investigates the potential of advanced Machine Learning (ML) methodologies to predict fluctuations in the price of gold. The study employs data from leading global stock indices, the S&P500 VIX volatility index, major commodity futures, and 10-year bond yields from the US, Germany, France, and Japan. Lagged values of these features up to 10 previous days are also used. Four machine learning models are used: Random Forest, Gradient Boosted Regression Trees (GBRT), and Extreme Gradient Boosting (XGBoost), to forecast future gold prices. The study finds that the most influential stocks indices for prediction are one-day lagged data of ASX, S&P500, TA35, IBEX, and AEX, as well as U.S. and Japan bonds yields and delayed data of gas and silver. Furthermore, the study's models identify that one-day lagged VIX score and our VIX dummy variable have a significant impact on gold price, indicating that economic uncertainty affects gold prices. The results suggest that incorporating various financial indicators and moving averages can be a powerful tool for predicting future gold prices. GBRT and XGBoost can be valuable models for making informed decisions about gold investments.
Keywords: Commodities; Machine learning; Regression trees; Gradient boosted regression trees; Extreme gradient boosting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009803
DOI: 10.1016/j.chaos.2023.114079
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().