EconPapers    
Economics at your fingertips  
 

Relatedness in the era of machine learning

Andrea Tacchella, Andrea Zaccaria, Marco Miccheli and Luciano Pietronero

Chaos, Solitons & Fractals, 2023, vol. 176, issue C

Abstract: Relatedness is a quantification of how much two human activities are similar in terms of the inputs and contexts needed for their development. Under the idea that it is easier to move between related activities than towards unrelated ones, empirical approaches to quantify relatedness are currently used as predictive tools to inform policies and development strategies in governments, international organizations, and firms. Here we show that the standard, widespread approach of estimating Relatedness through the co-location of activities (e.g. Product Space) generates a measure of relatedness that performs worse than trivial auto-correlation prediction strategies. In this paper, working on data about countries’ trade, technologies, and scientific production, we show two main findings. First, we find that a shift from two-product correlations (network-density based) to many-product correlations (decision trees) can dramatically improve the quality of forecasts, allowing the possibility to assist policymakers in optimizing decisions to promote growth. Then, we propose a new methodology to empirically estimate Relatedness that we call Continuous Projection Space (CPS). CPS, which represents a general network embedding technique, vastly outperforms all the co-location, network-based approaches, while retaining similar interpretability in terms of pairwise distances. Depending on the dataset the best approach is always either CPS or machine learning algorithms based on decision trees.

Keywords: Economic complexity; Machine learning; Relatedness; Industry upgrading (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009724
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923009724

DOI: 10.1016/j.chaos.2023.114071

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923009724