Multi-output time series forecasting with randomized multivariate Fuzzy Cognitive Maps
Omid Orang,
Petrônio Cândido de Lima e Silva and
Frederico Gadelha Guimarães
Chaos, Solitons & Fractals, 2023, vol. 176, issue C
Abstract:
Fuzzy Cognitive Maps (FCMs) have become a relevant technique for modeling and forecasting time series due to their advantages in dealing with uncertainty and simulating the dynamics of complex systems. Although numerous univariate and multivariate FCM-based forecasting models have been presented in the literature, one of the still open questions is how to enable FCMs to forecast multivariate time series for multiple-input, multiple-output (MIMO) systems with an efficient learning mechanism. from a computational point of view. This paper suggests a randomized MIMO FCM-based forecasting approach called MO-RHFCM to predict low-dimensional multivariate time series. More specifically, MO-RHFCM is a hybrid model merging the concepts of multivariate fuzzy time series, high order FCM (HFCM), and Echo State Networks (ESN). The structure of MO-RHFCM consists of three layers: input layer, reservoir (internal) layer, and output layer. Only the output layer is trainable using the Least Squares minimization algorithm; hence training the proposed MO-RHFCM method is fast and simple. The weights inside each sub-reservoir are selected randomly and remain fixed during the training process. The obtained results indicate the efficacy and validity of the proposed MO-RHFCM technique compared with some machine learning and deep learning baseline models.
Keywords: Fuzzy Cognitive Maps; Multiple-input multiple-output; Multivariate fuzzy time series; Echo state network; Least squares (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009785
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923009785
DOI: 10.1016/j.chaos.2023.114077
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().