From Collatz Conjecture to chaos and hash function
Masrat Rasool and
Samir Brahim Belhaouari
Chaos, Solitons & Fractals, 2023, vol. 176, issue C
Abstract:
The non-linear property of Chaos is a promising approach to information security, and many accomplishments have been made by combining Chaos with several sub-security domains, including chaos-based stream ciphers, block ciphers, image encryption, and hash functions. Most Chaos-based hash functions are insecure or inefficient due to their dependence on complex, attacked multi-dimensional maps or uncertain, weak one-dimensional maps like logistic and tent. The Collatz Conjecture is a mystery that has stumped mathematicians for decades and still has not been solved. This paper aims to introduce a novel approach to addressing current security challenges by utilizing our generalized Collatz process to create a chaos-based hash function. By leveraging the unpredictable behaviour of the Collatz sequence, the proposed hash function aims to enhance ergodicity and entropy properties, thereby making it well-suited for cryptographic applications. In the proposed method, the chaotic variables are governed by cryptographic keys, crucial in generating data sequences. These sequences are then utilized within the diffusion and confusion structures of the hashing function. The design of the chaos-hash model is carefully optimized to exhibit desirable characteristics such as randomness, collision resistance, uniformity, sensitivity to initial conditions, speed, and resistance against cryptanalysis.
Keywords: Chaotic map; Hash function; Security; Collatz Conjecture (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923010044
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010044
DOI: 10.1016/j.chaos.2023.114103
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().