Stability analysis of the Chua’s circuit with generic odd nonlinearity
Ronilson Rocha and
Rene Orlando Medrano-T
Chaos, Solitons & Fractals, 2023, vol. 176, issue C
Abstract:
This paper analyzes the stability of the Chua’s circuit with generic odd nonlinearity using two traditional analytical tools of the control theory. The first tool is based on the linear approximation of a nonlinear system for the local stability analysis around equilibrium points or manifolds using the Jacobian matrix eigenvalues, which are mapped in the complex plane using the root locus method. The second tool is an extension of linear techniques based on frequency response known as describing function method, which allows analyze effects of nonlinearities in dynamical systems and predict several nonlinear phenomena with reasonable accuracy. These two analytical tools are jointly applied to the stability analysis of an example of this class of nonlinear systems to identify and map its dynamical behavior in parameter space. Numerical investigations based on computational simulations corroborate the theoretical predictions obtained in this stability analysis.
Keywords: Chua’s circuit; Odd nonlinearity; Sinusoidal nonlinearity; Stability analysis; Root locus; Describing functions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923010135
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010135
DOI: 10.1016/j.chaos.2023.114112
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().