Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations
Zichen Yao,
Zhanwen Yang and
Jianfang Gao
Chaos, Solitons & Fractals, 2023, vol. 177, issue C
Abstract:
In this paper, we investigate the unconditional stability and the generally unconditional stability of the Grünwald Letnikov method for fractional-order delay differential equations (FDDEs), which is the generalization of P-stability and GP-stability for classical integer-order delay differential equations. Using the Z-transform, an equivalent form of the discrete Laplace transform, we first show the unconditional stability of the Grünwald Letnikov method for any delay and any constraint mesh. Secondly, we also derive the generally unconditional stability of the Grünwald Letnikov method with a linear interpolation for approximating the delay term under a general uniform mesh. It is shown that the Grünwald Letnikov method for FDDEs preserves the stability for the analytical solution and hence naturally inherits the α-dependence. Finally, two numerical examples for FDDEs and time fractional-order diffusion equations with delay are presented to demonstrate the validity and effectiveness of theoretical results.
Keywords: Fractional-order delay differential equations; Caputo’s fractional derivative; Grünwald Letnikov method; Unconditional stability; Generally unconditional stability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923010950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923010950
DOI: 10.1016/j.chaos.2023.114193
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().