Lie symmetry analysis for the Cargo–Leroux model with isentropic perturbation pressure equation of state
Ashutosh Kumar Karna and
Purnima Satapathy
Chaos, Solitons & Fractals, 2023, vol. 177, issue C
Abstract:
In this article, the well-known Cargo–Leroux model with isentropic perturbation equation of state is analyzed using the Lie symmetry method. By using invariant conditions of system of partial differential equations, six dimensional Lie algebra is obtained. The optimal system for system of partial differential equations is constructed using adjoint representation and the invariants of associated Lie algebras of the system. Further, with the help of one-dimensional optimal system invariant solutions are constructed. Also, physically significant solutions such as traveling wave solutions, specifically the kink-type solitons and peakon-type solitons are obtained by using traveling wave transformations and all the solutions are graphically demonstrated. Finally, the hyperbolic nature of system of partial differential equations is examined by studying the evolutionary behavior of a discontinuity wave.
Keywords: Lie symmetries; Optimal systems; Invariant solutions; Weak discontinuity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923011438
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011438
DOI: 10.1016/j.chaos.2023.114241
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().