Quantum Fisher information of an N-qubit maximal sliced state in decoherence channels and Ising-type interacting model
Yan Li and
Zhihong Ren
Chaos, Solitons & Fractals, 2023, vol. 177, issue C
Abstract:
Various quantum states have been suggested to realize high-precision measurement and quantum Fisher information (QFI) is one of the most important indicators to evaluate the performance. Here, we systematically investigate the QFI of an N-qubit maximal sliced (MS) state in different environments. In the ideal situation, we present the analytical QFI and it decays from N2 to (N−1)2 as the probability amplitude α changed from 0 to 1, which denotes the decreased metrological ability. In the amplitude damping channel, the variation trends of QFI with respect to the damping probability p are similar and it decreases to the number of qubits N at p=1, meaning the vanished entanglement superiority. However, it is different in the phase damping channel where with the increase of the number of qubits a turning point of QFI equal to N is found at p closing to 0.1. In the Ising-type interacting model, with the increasing interaction strength γ, the QFI with respect to α shows a crossover from decreasing to increasing. Particularly, at the critical point γ=1, the QFI of an N-qubit MS state is found analytically equal to N2 and regardless of α. This indicates a great potential in achieving the Heisenberg-limited metrology and may shed some new light on quantum information science.
Keywords: Quantum Fisher information; Maximal slice state; Decoherence channels; Ising-type interacting model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923011918
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011918
DOI: 10.1016/j.chaos.2023.114289
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().