EconPapers    
Economics at your fingertips  
 

Contact-dependent infection and mobility in the metapopulation SIR model from a birth–death process perspective

Meiling Xie, Yuhan Li, Minyu Feng and Jürgen Kurths

Chaos, Solitons & Fractals, 2023, vol. 177, issue C

Abstract: Given the widespread impact of COVID-19, modeling and analysis of epidemic propagation has been critical to epidemic prevention and control. However, previous studies have overlooked the significant influence of individual heterogeneity in behavior and physiology, including contact-dependent infection and migration on epidemic propagation. In this paper, we propose two metapopulation SIR models from individual and population perspectives. The first individual model introduces individual contact-dependent infection considering activity potential and infection rate, which leads to the derivation of the basic reproduction number R0 of our model. The birth–death process, used in the second population model, is represented by a compound Poisson process flow and Poisson process decomposition, respectively, to depict population mobility among subpopulations. In simulations, the number of individuals in each state and the converged number are illustrated to demonstrate the impact of various parameters. The relationship between the basic reproduction number R0 and various parameters is also demonstrated. Furthermore, the validity of our model is also confirmed on a real clinical report dataset of COVID-19 disease.

Keywords: Epidemic modeling; Metapopulation network; Birth–death process; Contact-dependent infection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923012018
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923012018

DOI: 10.1016/j.chaos.2023.114299

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923012018