Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks
Madhab Barman and
Nachiketa Mishra
Chaos, Solitons & Fractals, 2024, vol. 178, issue C
Abstract:
Using graph Laplacian diffusion, a delayed Susceptible–Exposed–Infected–Removed (SEIR) epidemic model with a non-linear incidence rate has been considered. This model incorporates a diffusion term that captures population mobility through a network. The local stability analysis for each steady state is demonstrated. Furthermore, we have explored the existence of Hopf bifurcation at the endemic equilibrium and addressed its direction using the Normal Form Theory and Center of Manifold Theorem. To visually illustrate our theoretical findings, we have performed computational experiments on a small-world Watts–Strogatz graph.
Keywords: Network; Epidemic model; Hopf bifurcation; Stability; Delay (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923012535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012535
DOI: 10.1016/j.chaos.2023.114351
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().