EconPapers    
Economics at your fingertips  
 

Optimized injection of noise in activation functions to improve generalization of neural networks

Fabing Duan, François Chapeau-Blondeau and Derek Abbott

Chaos, Solitons & Fractals, 2024, vol. 178, issue C

Abstract: This paper proposes a flexible probabilistic activation function that enhances the training and operation of artificial neural networks by intentionally injecting noise to gain additional control over the response of each neuron. During the learning phase, the level of injected noise is iteratively optimized by gradient-descent, realizing a form of adaptive stochastic resonance. From simple hard-threshold non-differentiable neuronal responses, controlled injection of noise gives access to a wide range of useful activation functions, with sufficient differentiability to enable gradient-descent learning for both the neuron and the injected-noise levels. Experimental results on function approximation demonstrate injected noise generally converging to non-vanishing optimal levels associated with improved generalization abilities in the neural networks. A theoretical explanation of the generalization improvement based on the path norm bound is presented. With injected noise in the deep neural network, experimental results on classifying images also obtain non-vanishing optimal noise levels to achieve better testing accuracies. The proposed probabilistic activation functions show the potential of adaptive stochastic resonance for useful applications in machine learning.

Keywords: Probabilistic activation function; Adaptive stochastic resonance; Injected noise; Rademacher complexity; Generalization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923012651
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012651

DOI: 10.1016/j.chaos.2023.114363

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012651