Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data
Zhongyuan Che,
Chong Peng and
Chenxiao Yue
Chaos, Solitons & Fractals, 2024, vol. 178, issue C
Abstract:
LSTM networks are popular for predicting data with nonlinear and temporal properties. However, it is difficult to select optimal hyperparameters using empirical methods, which can significantly affect their performance and modeling time. To address this, we propose a novel hybrid model called CMAL-WOA-LSTM (CWLM), which utilizes the multi-strategy improved whale optimization algorithm (WOA) to optimize three key hyperparameters of LSTM. Four modifications are introduced to improve the performance of WOA. Circle chaotic map is used for population initialization, and a modified dynamic backward learning strategy improves population diversity. A nonlinear function optimizes iterations to allow global exploration and faster convergence. Lévy Flight updates of feasible solutions using random walks are carried out near the optimal value for each iteration. By conducting benchmarks and comparative analysis, we illustrate the effectiveness and rationale behind the four improvements. Subsequently, we explain our optimization ideas for constructing hybrid models, highlighting their distinctions from traditional deep learning approaches. Moreover, we provide detailed modeling steps for CWLM and elaborate on the relationships of each part within the model. CWLM is compared with five other models using milling force data and wear data from high-speed machine tests. Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, R-Squared, and computational time are used as error metrics. The results show that CWLM outperforms other models in terms of prediction performance and robustness. CWLM demonstrates improved prediction performance and robustness, making it applicable in a wide range of applications that use LSTM for data prediction.
Keywords: Multi-strategy improved whale optimization algorithm; Long short-term memory; Hyperparameter optimization; Milling force prediction; Tool wear prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923012961
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012961
DOI: 10.1016/j.chaos.2023.114394
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().