Dynamics of infinitesimal body in the concentric restricted five-body problem
M. Javed Idrisi,
M. Shahbaz Ullah,
S. Ershkov and
E.Y. Prosviryakov
Chaos, Solitons & Fractals, 2024, vol. 179, issue C
Abstract:
This research presents a model of a specific restricted five-body problem. In this model, there are four main bodies, referred to as primary bodies. The first two primary bodies have the same mass while the third and fourth primary bodies also share an identical mass, which is lesser than the former. These primary bodies are lined up in a straight line along a designated axis. They revolve in circular paths with different distances from a common central point that represents their shared center of mass. The first set of orbits has a shorter radius compared to the second set. Simplifying the motion equations of an infinitesimally small mass reveals a single governing parameter, λ, constrained within λ ∊ (λ0, 1), λ0 = 0.417221. Within the orbital plane of these primaries, seven equilibrium points are identified: four along the x-axis, two on the y-axis, and one at the system's origin. Notably, no equilibrium points were found outside this orbital plane. The study concludes that collinear equilibrium points are linearly unstable, while the non-collinear points maintain stability for values λc < λ < 1, λc = 0.971105.
Keywords: Concentric restricted five-body problem; Orbital plane; Equilibrium points; Linear stability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923013504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923013504
DOI: 10.1016/j.chaos.2023.114448
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().