Searching nontrivial magnetic equilibria using the deflated Newton method
Jaime Cisternas and
Andrés Concha
Chaos, Solitons & Fractals, 2024, vol. 179, issue C
Abstract:
Nonlinear systems that model physical experiments often have many equilibrium configurations, and the number of these static solutions grows with the number of degrees of freedom and the presence of symmetries. It is impossible to know a priori how many equilibria exist and which ones are stable or relevant, therefore from the modeler’s perspective, an exhaustive search and symmetry classification in the space of solutions are necessary. With this purpose in mind, the method of deflation (introduced by Farrell as a modification of the classic Newton iterative method) offers a systematic way of finding every possible solution of a set of equations. In this contribution we apply deflated Newton and deflated continuation methods to a model of macroscopic magnetic rotors, and find hundreds of new equilibria that can be classified according to their symmetry. We assess the benefits and limitations of the method for finding branches of solutions in the presence of a symmetry group, and explore the high-dimensional basins of attraction of the method in selected 2-dimensional sections, illustrating the effect of deflation on the convergence.
Keywords: Magnets; Symmetry; Newton method; Deflation; Basins of attraction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924000195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077924000195
DOI: 10.1016/j.chaos.2024.114468
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().