EconPapers    
Economics at your fingertips  
 

Linear multifractional stable motion for modeling of fluid-filled regions in retinal optical coherence tomography images

Mahnoosh Tajmirriahi and Hossein Rabbani

Chaos, Solitons & Fractals, 2024, vol. 180, issue C

Abstract: Fluid appears in several retinal disorders can be visualized by optical coherence tomography (OCT) images. Since manual survey of OCT images is challenging, automatic fluid detection is desirable. This paper develops a generalized multifractal framework to model the local scale-invariant property of retinal OCT signals and accordingly proposes a simple methodology for automatic localization of fluid-filled regions. The proposed framework comprises both local self-similarity and heavy tailed distribution of OCT signals by generalization of fractional Levy stable motion (fLsm) to the Riemann-Liouville multifractional Levy stable motion (RL-mLsm). In order to measure the multifractality appears in RL-mLsm, the scaling properties of Levy flights and stochastic differential equations (SDEs) are used to develop a fractional momentbased algorithm namely, multi-fractional Levy fluctuation analysis (MLFA) algorithm. Here, we apply MLFA to model OCT images. Modeling results indicate the significant difference between the multifractal bandwidth in non-fluid and fluid regions. In addition, by utilizing various surrogate series of the signals, we discover the source of multifractality of OCT signals. As an application of the proposed multifractal modeling, we propose a new method, based on simple clustering of estimated local scaling exponent of modeled OCT signals, to localize fluid regions in OCT images. The localization method is validated, and the experimental results reveal the superiority of proposed method. Overall, the proposed multifractal framework has full advantages on excellent improvement of fluid localization, which promises the proposed model is suitable for effective description of self-similar nature of normal and abnormal OCT images independent of capturing device.

Keywords: Multifractal analysis; Stochastic differential equations (SDE); Local self-similarity; Fractional Levy motion; Fluid localization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924000377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000377

DOI: 10.1016/j.chaos.2024.114486

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000377