Fractal properties, information theory, and market efficiency
Xavier Brouty and
Matthieu Garcin
Chaos, Solitons & Fractals, 2024, vol. 180, issue C
Abstract:
Considering that both the entropy-based market information and the Hurst exponent are useful tools for determining whether the efficient market hypothesis holds for a given asset, we study the link between the two approaches. We thus provide a theoretical expression for the market information when log-prices follow either a fractional Brownian motion or its stationary extension using the Lamperti transform. In the latter model, we show that a Hurst exponent close to 1/2 can lead to a very high informativeness of the time series, because of the stationarity mechanism induced by the Lamperti transform. This result contrasts with the zero information of the fractional Brownian motion for the same value of the Hurst exponent. In addition, we introduce a multiscale method to get a deeper interpretation of the entropy and of the market information, depending on the size of the information set. Applications to Bitcoin, CAC 40 index, Nikkei 225 index, and EUR/USD FX rate, using daily or intraday data, illustrate the methodological content.
Keywords: Fractional brownian motion; Hurst exponent; Market information; Multiscale entropy; Shannon entropy; Stationary process (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924000948
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000948
DOI: 10.1016/j.chaos.2024.114543
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().