The Julia and Mandelbrot sets for the function zp−qz2+rz+sincw exhibit Mann and Picard–Mann orbits along with s-convexity
Nabaraj Adhikari and
Wutiphol Sintunavarat
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
This research paper introduces a novel approach to visualize Julia and Mandelbrot sets by employing iterative techniques, which play a crucial role in creating fractals. The primary focus is on complex functions of the form F(z)=zp−qz2+rz+sincw for all z∈ℂ, where p∈N∖{1}, q∈ℂ, r,c∈ℂ∖{0} and w∈[1,∞). The Mann and Picard–Mann iteration schemes with s-convexity are utilized throughout the study. Innovative escape criteria are developed to generate Julia and Mandelbrot sets using these iterative methods. These criteria serve as guidelines for determining when the iterative process should terminate, leading to the creation of captivating fractal patterns. The research investigates the impact of parameter variations within the iteration schemes on the resulting fractal’s shape, size, and color. By manipulating these parameters, a wide range of captivating fractal patterns can be generated and visualized, encompassing various aesthetic possibilities. Additionally, we discuss the numerical examples related to Julia and Mandelbrot sets generated through the proposed iteration. We also delve into discussions concerning execution time and the average number of iterations.
Keywords: Fractals; Mann iterative method; Picard–Mann iterative method; Escape criteria; s-convexity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924001516
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001516
DOI: 10.1016/j.chaos.2024.114600
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().