Bifurcations to bursting oscillations in memristor-based FitzHugh-Nagumo circuit
Bocheng Bao,
Liuhui Chen,
Han Bao,
Mo Chen and
Quan Xu
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
To characterize neuronal firing activities and elucidate its bifurcation mechanisms, a memristor-based FitzHugh-Nagumo (FHN) circuit is designed based on the FHN circuit architecture combined with a first-order memristive simulator, and its normalized system with periodic and quasi-periodic bursting oscillations is established. With the change of externally applied excitation, the memristor-based FHN system has the time-varying equilibrium point where the number, position and stability evolve slowly over time. In an evolution period of the time-domain waveform, different fold and/or Hopf bifurcations are triggered, resulting in periodic or quasi-periodic bursting oscillations. To explain the intrinsic bifurcation mechanisms, the fold and Hopf bifurcation sets are built and the transitions between the resting and spiking states are demonstrated, thus identifying the Hopf/fold and Hopf/Hopf bursting oscillations. Finally, based on the circuit simulation model, analog circuit simulations and hardware circuit measurements are developed for the memristor-based FHN circuit to confirm MATLAB numerical simulations. In addition, it is worth noting that the proposed circuit is a simple non-autonomous memristive neuron circuit that is particularly easy to physically implement.
Keywords: Memristor; FitzHugh-Nagumo circuit; Bifurcation; Time-varying equilibrium point; Quasi-periodic bursting oscillation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924001590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001590
DOI: 10.1016/j.chaos.2024.114608
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().