Asymmetric games on networks: Mapping to Ising models and bounded rationality
Filippo Zimmaro,
Serge Galam and
Marco Alberto Javarone
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
We investigate the dynamics of coordination and consensus in an agent population. Considering agents endowed with bounded rationality, we study asymmetric coordination games using a mapping to random field Ising models. In doing so, we investigate the relationship between group coordination and agent rationality. Analytical calculations and numerical simulations of the proposed model lead to novel insight into opinion dynamics. For instance, we find that bounded rationality and preference intensity can determine a series of possible scenarios with different levels of opinion polarization. To conclude, we deem our investigation opens a new avenue for studying game dynamics through methods of statistical physics.
Keywords: Asymmetric games; Potential games; Ising model; Opinion dynamics; Complex systems (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924002182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002182
DOI: 10.1016/j.chaos.2024.114666
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().