Spatiotemporal wavelet-domain neuroimaging of chaotic EEG seizure signals in epilepsy diagnosis and prognosis with the use of graph convolutional LSTM networks
Njud S. Alharbi,
Stelios Bekiros,
Hadi Jahanshahi,
Jun Mou and
Qijia Yao
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
In the crucial arena of neurological care, pre-seizure, and seizure diagnosis stand as imperative focal points. While existing literature has probed this area, it demands sustained exploration given the intricate nature of seizures and the profound implications of prompt diagnosis on patient prognosis. Greater insights and novel advancements in the field of epilepsy diagnosis and prognosis can significantly bolster patient health and potentially redefine treatment management. Deep learning models like long short-term memory networks (LSTM) show promise for sequential data analysis. However, their application to electroencephalogram (EEG) signals for seizure detection reveals challenges, especially in imbalanced datasets. In response, we develop a hybrid graph neural network, integrating Convolutional Neural Networks (CNN) and LSTM through optimized skip connections. These connections, combined with our optimized graph structure, ensure no loss of crucial temporal data. The CNN layer efficiently extracts spatial features from samples, while LSTM emphasizes the EEG signal's temporal nuances. A unique facet of our proposed architecture is its optimized structure which is obtained based on Bayesian optimization. It does not merely refine network parameters but also systematically determines the optimal neuron count, layering, and overall architecture of our graph neural network. Alongside our deep learning methodology, we conduct a dynamical analysis elucidating the intrinsic chaotic patterns of seizure neural EEG signals. We demonstrate that the phase space analysis provides valuable insight for wavelet time-scale pre-processing for pre-seizure and seizure diagnosis. The numerical and empirical results validate the performance of our novel and breakthrough approach. Also, the results are compared with outcomes obtained using LSTM in different conditions.
Keywords: Neuroscience; EEGs; Continuous wavelet transform; Convolutional networks; Long short-term memory networks; Hybrid deep learning; Chaotic seizure signals; Graph networks (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924002273
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002273
DOI: 10.1016/j.chaos.2024.114675
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().