The mKdV equation under the Gaussian white noise and Wiener process: Darboux transformation and stochastic soliton solutions
Rui-rui Yuan,
Ying Shi,
Song-lin Zhao and
Wen-zhuo Wang
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
In this paper, we propose a novel integrable system named the stochastic mKdV equation, along with its corresponding Lax pair. We aim to extend the methodology of deterministic integrable systems to construct and solve stochastic integrable systems. The Darboux transformation effectively obtains analytic solutions for the integrable stochastic mKdV equation. Using the Darboux transformation, soliton solutions incorporating stochastic terms are obtained as Wronskian determinants. Furthermore, we conduct an in-depth analysis of the dynamics exhibited by the stochastic one-soliton and the two-soliton solutions.
Keywords: Stochastic mKdV equation; Gaussian white noise; Darboux transformation; Stochastic soliton solutions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924002613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002613
DOI: 10.1016/j.chaos.2024.114709
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().