Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives
Hasanen A. Hammad and
Maryam G. Alshehri
Chaos, Solitons & Fractals, 2024, vol. 182, issue C
Abstract:
This research focuses on utilizing the Mittag-Leffler kernel within stochastic differential systems to estimate the controllability of nonlocal Atangana–Baleanu fractional derivatives. By assuming the automatic control of the corresponding linear system, a novel set of necessary and sufficient conditions for the approximate controllability of the fractional stochastic differential inclusions of Atangana–Baleanu is established. Furthermore, the study explores the approximate controllability of the proposed system with infinite delay. The investigation relies on the fixed-point theorem for multivalued operators and fractional calculus to derive these outcomes. Lastly, an illustrative example is provided to highlight the practical implications of the research findings.
Keywords: Mittag-Leffler kernel; Fractional stochastic differential inclusion; Atangana–Baleanu operator; Fixed point technique; Multi-valued mapping (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924003278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003278
DOI: 10.1016/j.chaos.2024.114775
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().