An averaging result for fractional variable-order neutral differential equations with variable delays driven by Markovian switching and Lévy noise
Seyfeddine Moualkia,
Yang Liu,
Jianlong Qiu and
Jianquan Lu
Chaos, Solitons & Fractals, 2024, vol. 182, issue C
Abstract:
In this paper, we derive new results on the averaging principle for a class of Caputo neutral stochastic system driven by Markovian switching and Lévy noise with variable delays and time-varying fractional order. Under a set of appropriate conditions, we showed that solutions of the averaged stochastic systems approach the solutions of the original stochastic systems in the sense of both convergences in mean square and convergence in probability. Finally, we attach two examples with numerical simulations to justify the validity of our theory.
Keywords: Averaging principle; Fractional variable-order; Neutral differential equation; Lévy noise; Markovian switching; Variable delay (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924003473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003473
DOI: 10.1016/j.chaos.2024.114795
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().