EconPapers    
Economics at your fingertips  
 

Analytical results on the existence of periodic orbits and canard-type invariant torus in a simple dissipative oscillator

Marcelo Messias and Murilo R. Cândido

Chaos, Solitons & Fractals, 2024, vol. 182, issue C

Abstract: In this paper we consider a simple dissipative oscillator, determined by a two-parameter three-dimensional system of ordinary differential equations, obtained from the Nosé–Hoover oscillator by adding a small anti-damping term in its third equation. Based on numerical evidence, complex dynamics of this system was presented in a recent paper, such as the coexistence of periodic orbits, chaotic attractors and a stable invariant torus. Here we analytically prove the existence of a small periodic orbit from which a stable invariant torus bifurcates near the origin of the dissipative oscillator. We also show that the oscillations near the torus present a kind of relaxation oscillation behavior, like canard-type oscillations, commonly found in singularly perturbed systems. The obtained results extend and provide analytical proofs for some dynamical properties of the considered system, which were numerically described in the literature.

Keywords: Averaging theory; Periodic solution; Neimark–Sacker bifurcation; Torus canard (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924003977
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003977

DOI: 10.1016/j.chaos.2024.114845

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003977