EconPapers    
Economics at your fingertips  
 

Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques

Haiyan Yuan and Quanxin Zhu

Chaos, Solitons & Fractals, 2024, vol. 183, issue C

Abstract: In this paper, we focus on stochastic delay differential equations in the G-framework (G-SDDEs). We introduce the practical stability to examine whether the performance of G-SDDE near an unstable equilibrium point is acceptable. We establish a new generalized Gronwall inequality based on which we prove the practical mean-square (PMS) exponential stability of G-SDDE. We also establish the stability equivalence between the discrete and the continuous EM approximations for G-SDDE and then show that the continuous EM approximation can preserve the PMS exponential stability of G-SDDE. One numerical experiment is conducted to confirm our theoretical results.

Keywords: G-Brownian motion; Stochastic delay differential equation; Euler–Maruyama method; PMS exponential stability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924004727
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004727

DOI: 10.1016/j.chaos.2024.114920

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004727